CASE REPORT

CARDIOVASCULAR RISK SCREENING OPTIONS IN DIABETES: FRAMEWORK FOR SELECTIVE ADOPTION

Ezekiel U Nwose¹, Kester A Digban², Echinei J Oshionwu³, Innocent C Onyia⁴, Phillip T Bwititi⁵, Victor M Oguoma⁶, Anayochukwu E Anyasodor⁷, Prajwal Gyawali⁸

Financial Support: None declared
Conflict of interest: None declared
Copy right: The Journal retains the copyrights of this article. However, reproduction is permissible with due acknowledgement of the source.

Author's Affiliation:
¹Charles Sturt University, Australia; ²Department of Public and Community Health, Novena University Ogume, Delta State, Nigeria; ³California Department of State Hospitals, Sacramento, CA 95814, USA; ⁴Onyx Hospital and Maternity Ltd, Lagos, Nigeria; ⁵Faculty of Science, Charles Sturt University, New South Wales, Australia; ⁶School of Psychological and Clinical Science, Charles Darwin University, Australia

Correspondence:
Ezekiel Uba Nwose
enwose@csu.edu.au

INTRODUCTION

Much may have been learnt of sudden death, but the skills to use available resources to screen individuals at risk for SCD within the population remains poor. Some may have lost either a family member or friend to sudden death. Sudden death is a real clinical term that is otherwise known as cardiovascular accident (CVA) or heart failure. It is characterized by metabolic syndrome and/or ‘subclinical cardiovascular disease (SCVD) factors’ that cause the heart to fail suddenly. A person who harbours the ‘SCVD factors’ could be apparently healthy and unaware of her/his risk of heart disease.

What is probably elusive about sudden death (hence a health counselling issue) is that about 80% of cardiovascular disease (CVD) deaths worldwide take place in developing, low-mid income communities (LMIC), and also account for 86% of the global CVD burden. It is pertinent to note that this problem has underpinned the research grant funding by the Global Alliance for Chronic Disease for the 2015. While little or no social healthcare is institutionalized for CVD counselling; and primary healthcare providers are marginally effective, some allied health professionals are offering suboptimal counselling service. A quick review of health services available to CVD patients in LMIC
may reveal the need for allied health professionals to awake to their counselling roles in the screening and early identification of CVD risk. In other words “education and awareness among the population remain important steps in reducing the impact of this condition.”

Different CVD risk factor stratification models exist. It is known that some models overestimate risks relative to others. For instance, comparisons have been done on Framingham and Reynolds Risk scores for global cardiovascular risk prediction, whereby the former was reported to have overestimated risk for coronary heart disease and major CVD. Otherwise, comparison of various models is quite controversial or difficult, especially as every model either underestimates or overestimates risk. Further, body mass index (BMI) and waist circumference are different measures of obesity reported to suit different populations. What is yet to be emphasized in educational models and programs is the need for ‘selective adoption’ as well as the adoptability for patient education and counselling in LMIC.

Case 1: Different models of cardiovascular risk give different screening outcome

Case: apparently healthy 40 years old, 175cm tall female who weighed 70Kg and was a non-smoker. Review: One of the models of screening is the flowchart based on the Framingham Heart Study which depends on blood lipid profile. For this case, 10year CVA risk of the patient is 5.9% and estimated heart and vascular age is 58 years based on ‘lipid’ model (Fig. 1). This outcome is different from BMI model. The other is the New Zealand Guidelines Group (NZGG) model. For the same patient, NZGG model’s estimate is indeterminate, because the chart is limited in total cholesterol range. A third model is the interactive algorithm from the British United Provident Association (BUPA) which estimated CVA risk on a scale and the health age of case to be 37 years – i.e. younger or relatively healthier (Fig. 2).

Case 2: Comparative review of BMI and lipid models

To demonstrate that risk scores from BMI model is different relative to when lipid profile is used, a hypothetical situation is presented. All twelve individuals are apparently healthy, ‘non-diabetic’, non-smokers, same age (50 years old) and have the same blood pressure of 140/80 mmHg (Table 1). The cases on Table 1 indicate that Cases 1 – 4 are clinically obese (BMI > 30) with relatively normal cholesterol levels (TC/HDL <3.3). Cases 5 – 7 have borderline BMI and cholesterol levels. On the other hand, cases 8 – 10 are non-obese with classical dyslipidaemia while 11th and 12th Cases are both anorexic (perhaps malnourished in the poverty context) and dyslipidaemic.

Results of CVD risk using the Framingham models based show that the BMI model yields a higher risk value in obese individuals compared to the lipid model, but probably only in males. On the contrary, the lipid model yields higher risk level in non-obese individuals, especially in females. In particular, the 12th Case compared to Cases #2, 4, 6, & 8 indicate that a very slim person can have metabolic syndrome or higher CVD risk relative to an obese.

Case 3: Discrepancies in criteria for diagnosis of obesity and metabolic syndrome

It is known that there are different criteria for the diagnosis of cardiometabolic syndrome including but not limited to the World Health Organization (WHO) 1999, International Diabetic Federation (IDF) 2005 and National Cholesterol Education Program Adult Treatment Panel III (ATP III) 2001. One of the fundamental differences between the various criteria is definition of obesity. There apparently exist different criteria for diagnosis of obesity (either BMI or waist circumference), of which there is disparity in definition of waist circumference.

Measurements from a case of 48yo man are presented for the purpose of evaluation of three different definitions of waist circumference as a diagnostic factor of obesity and metabolic syndrome (Table 2). The table expatiates that while there is discrepancy in the diagnosis of obesity when waist circumference instead of BMI is used, different ‘definitions of waist circumference’ also impacts on identification of obesity.
Table 1: Comparative outcomes of CVD risk in Framingham’s BMI vs. lipid models

<table>
<thead>
<tr>
<th>Case #</th>
<th>Gender</th>
<th>BMI model</th>
<th>lipid model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Weight (Kg)</td>
<td>Height (m)</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>135</td>
<td>1.85</td>
</tr>
<tr>
<td>2*‡</td>
<td>F</td>
<td>120</td>
<td>1.75</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>110</td>
<td>1.8</td>
</tr>
<tr>
<td>4*</td>
<td>F</td>
<td>100</td>
<td>1.7</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>90</td>
<td>1.8</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>85</td>
<td>1.7</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>80</td>
<td>1.75</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>70</td>
<td>1.75</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>65</td>
<td>1.75</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>60</td>
<td>1.75</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>55</td>
<td>1.8</td>
</tr>
<tr>
<td>12†</td>
<td>F</td>
<td>50</td>
<td>1.75</td>
</tr>
</tbody>
</table>

HDL: high density cholesterol; TC: total cholesterol
*Both models give approximately the risk – compared to others with discrepant outcomes
‡Normo-lipidaemic obese (BMI = 39) for comparison with case #12
*Dyslipidaemic underweight (BMI = 17) for comparison with case #2, 4, 6 & 8

Table 2: Waist circumference as diagnostic factor of obesity and metabolic syndrome (48yo man)

<table>
<thead>
<tr>
<th>Other metabolic syndrome criteria</th>
<th>Dyslipidaemia, normoglycaemia, normotriglyceridaemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body mass index (BMI)</td>
<td>95Kg/1.83m tall = 28.4 (non obese: BMI cut-off at 30)</td>
</tr>
<tr>
<td>Blood pressure criteria</td>
<td>140/90 mmHg Abnormal</td>
</tr>
</tbody>
</table>

Obesity criteria

<table>
<thead>
<tr>
<th>WC</th>
<th>Value</th>
<th>AHA//NHLBI (>102 cm)</th>
<th>IDF1 (>94 cm)</th>
<th>IDF1 (90 cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caesar’s preferred</td>
<td>100 cm</td>
<td>Normal*</td>
<td>Obese</td>
<td>Obese</td>
</tr>
<tr>
<td>Navel point</td>
<td>105 cm</td>
<td>Obese</td>
<td>Obese</td>
<td>Obese</td>
</tr>
<tr>
<td>ISO waist</td>
<td>92 cm</td>
<td>Normal*</td>
<td>Normal*</td>
<td>Obese</td>
</tr>
</tbody>
</table>

*Recommendation for Middle East Mediterranean and Sub-Saharan Africa
†Recommendation for Ethnic Central and South America
‡Recommendation for Middle East Mediterranean and Sub-Saharan Africa
*Decision on metabolic syndrome based on presence of x3 factors: negative where Caesar’s preferred and ISO waist is normal
5The average WC of men in our sub-Saharan Africa study population is < 90cm
DISCUSSION

Need for a paradigm shift in cardiovascular risk screening: In a research report from rural Virginia, it was investigated whether ‘community health workers’ (CHW) compared the ‘Registered Nurses’ (RN) can use a CVD risk screening tool. The CHW and RN were made to screen and segregate twenty-four participants for CVD risk into low risk (<10%), moderate risk (10 – 20%) and high risk. It was reported that about 38% attended healthcare for known disease risk. More importantly, it was identified that both the results CHW and RN groups were similar 10. That is, similar to the RNs results and recommendations, the CHWs identified the same number of participants as low risk and also recommended the same number of participants for follow-up. In a previous report from our research screening, up to 52% could benefit from Framingham’s BMI model, whereas less than 18% may require the lipid model 15.

The reports indicate that there is a gap between the knowledge, attitude and practice (KAP) toward CVD prevention vis-à-vis screening among low-mid income and/or rural community dwellers, which calls for improved measures of patients’ education and counselling 0,15-17. There is potential for allied health professionals to competently participate in CVD risk screening. This arguably calls for a paradigm shift to involve allied health professionals including CHW, counsellors and dietitians amongst others, from outside the conventional primary healthcare system to be engaged in CVD risk screening 10. This is with a view for early identification and intervention of CVD, especially among the LMIC where most of the people hardly seek medical attention 1.

5As framework: There is a potential 5-step (also known as 5As – ask, assess, advise, assist and arrange) framework for preventive cardiovascular health 18, which could constitutes a model of healthcare, especially in the LMIC where patients seek little or no institutional counselling in health service system. The 5-step framework may appear to be an Australian model. Yet, it is a tool that is never limited to any race. What is now required is for allied health professionals including primary and community healthcare workers in LMIC to embrace the development and do some observational studies, especially with a view to improve cardiovascular health counselling. Perhaps, what is imperative is knowledge to use the CVD screening tools in community healthcare settings.

CONCLUSION

Regardless of gender, BMI models of CVD risk assessment would be more suitable for normolipi-
cardiovascular risk prediction in the multiethnic Women's
Health Initiative. Circulation 2012; 125(14):1748-1756,
s1741-1711.

10. Thompson RH, Snyder AE, Burt DR, Greiner DS, Luna
MA. Risk screening for cardiovascular disease and
diabetes in Latino migrant farmworkers: a role for the
community health worker. J Community Health 2015;
40(1):131-137.

11. Michos ED, Blumenthal RS. How accurate are 3 risk
prediction models in US women? Circulation 2012;
125(14):1723-1726.

Cardiovascular Risk Profile for Use in Primary Care: The

govt.nz/publication/new-zealand-cardiovascular-risk-

14. BUPA. How does your health age stack up against your
bupa.com.au/health-and-wellness/tools-and-apps/tools-
and-calculators/quick-health-age-check. Accessed 26th
Dec 2013.

15. Oguoma VM, Nwose EU, Skinner TC, Digban KA, Onyia
IC, Richards RS. Prevalence of cardiovascular disease risk
factors among a Nigerian adult population: relationship
with income level and accessibility to CVD risks screening.

16. Oguoma VM, Nwose EU, Bwititi PT. Cardiovascular
disease risk prevention: preliminary survey of baseline
knowledge, attitude and practices of a nigerian rural

17. Nwose EU, Oguoma VM, Bwititi PT, Richards RS.
Metabolic syndrome and prediabetes in ndokwa

18. Harris M, Lloyd J. The role of Australian primary health
care in the prevention of chronic disease. Australian
anpha.gov.au/internet/anpha/publishing.nsf/Content/2
8433043152D3FDS5CA257B7E00270FED/$File/M%20Harri
s%20paper%202012%20-%20final.pdf. Accessed 03 Jan
2015.