A Clinical Profile of Dengue in Children of Tertiary Care Hospitals in Davangere

Vanitha SS1, Sandhyarani Javalkar1, Manjunath TP2

Financial Support: None declared
Conflict of Interest: None declared
Copy Right: The Journal retains the copyrights of this article. However, reproduction of this article in the part or total in any form is permissible with due acknowledgement of the source.

ABSTRACT

Background: Dengue fever is a rapidly spreading public health problem. The dengue fever shows high morbidity especially among children and sometime with severe complications followed by deaths. This research was done to study the clinical profile of confirmed dengue fever cases among children.

Materials and Methods: This is a hospital based cross sectional study. Confirmed dengue cases in children up to age 14 were the study participants. Pre designed and pre tested proforma was used to collect the information of confirmed dengue fever cases. χ² test, Fisher’s exact test and one way ANOVA were applied.

Results: Out of 150 paediatric dengue cases 41% were in the age group of 5-9 years. 74.7% of cases were from class III, IV and V socio-economic status. 44.7% cases were reported in post-monsoon period. Purpura (19.3%) was predominant bleeding manifestation. The mean haemoglobin and haematocrit values were 10.7 ± 2.6 gm/dl and 32.5 ± 7.6%, respectively. The mean platelet count was 136332.67 ± 115374.59/cumm.

Conclusion: The clinical manifestation of dengue varies widely ranging from undifferentiated fever to shock thus peripheral health worker and medical officer should be aware of the clinical profile of dengue infection for appropriate action.

Key words: Dengue; Manifestations; factors; haemoglobin.

INTRODUCTION

Dengue fever is a rapidly spreading public health problem in the world as well as India. Now and then in our country outbreaks are occurring since 1812 1. The dengue fever shows high morbidity and sometime with severe complications followed by deaths. The mortality is observed more among children. Dengue haemorrhagic fever (DHF) is more common in children less than 15 years of age in hyperendemic areas, in association with repeated dengue infections. An estimated 500,000 people with DHF require hospitalization each year. A very large proportion (approximately 90%) of them are children aged less than five years, and about 2.5% of those affected die 2.

The clinical presentation of dengue varies from asymptomatic or undifferentiated febrile illness or dengue haemorrhagic fever including dengue shock syndrome. All four serotypes of dengue associated with epidemics with varying degree of severity. Outbreak of dengue was noted in the year 2012 in Davangere in order to understand the clinical presentation and laboratory finding of dengue in children the current study has been taken up, with the objective of to study the clinical profile of confirmed dengue fever cases among children at tertiary care hospitals in Davangere.

MATERIALS AND METHODS

The present study was approved by institutional ethical committee. It was a hospital based cross sectional study, conducted for a period of 1 year from 1st Jan 2014 to 31st Dec 2014. Data collected using Pre-structured and pretested questionnaire,
the study subjects were confirmed pediatric dengue fever cases in the age group of 0 – 14 years, face to face interview with informant (parents/relatives of the child) and clinical examination was done for filling up of predesigned, pretested questionnaire for all confirmed cases of dengue after obtaining informed consent.

The definitions of dengue fever (DF), dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) were followed as per guidelines of WHO / Indian guidelines. Those children positive for NS1 Ag and/or Mac ELISA were taken as confirmed dengue case as per National Vector Born Disease Control Programme (NVBDCP) guidelines. The Modified B.G. Prasad classification of socio-economic status was used for classification of socio-economic status of study subjects.

The sample size of study subjects had been determined by estimating the confirmed dengue fever cases from Davangere district malaria office reports for the year 2012.

Total number of confirmed dengue fever cases in all age groups is 486. The number of confirmed dengue fever cases among children (0-14years) is 195 (40%). The sample size calculated using the formula n=4pq/d² where n= Sample size; p=confirmed dengue fever case (0-14years) is 40; q=100-p; and d=admissible error (20% of p). So the calculated sample size n=150.

The sample size of confirmed dengue fever cases to be studied (0-14years) is 150. During the study period of one year the sample size may decrease because the epidemic may decline.

The sample size of confirmed dengue fever cases to be studied (0-14years) is 150.

The data was compiled in Microsoft (MS) Excel work sheet and analysed using SPSS (Statistical Package for Social Sciences) software version 16.0. For the most of the variables chi-square (χ²) test was applied, if 20% or more than 20% have expected count less than 5 then fisher’s exact test was applied, one way ANOVA was used to analyse the laboratories parameters.

RESULTS

In the present study the mean age of paediatric dengue cases was 7.7 ± 4 years. 41% of these cases were in the age group of 5 - 9 years. Out of 150 cases 76 were males and 74 were females, in all age group males were more than females except in age group of 5 – 9 females were more. The ratio of M:F = 1.03:1. (Table 1).

Class III, IV and V socioeconomic status accounts for 74.7% (112) paediatric dengue cases and majority of cases belongs to rural area, of which class III accounts for 30% of cases. The ratio U:R = 1:1.6 (Table 2).

Majority of cases reported in July month 22.7 %, followed by August 11.3%, September 13.3% and December 14.7%. (Figure 1).

Table 1: Distribution of paediatric dengue cases according to their age groups and sex

<table>
<thead>
<tr>
<th>Age (yrs)</th>
<th>Male (n=76)</th>
<th>Female (n=74)</th>
<th>Total (n=150)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 4</td>
<td>19 (25)</td>
<td>17 (22.97)</td>
<td>36 (24)</td>
</tr>
<tr>
<td>5 – 9</td>
<td>28 (36.84)</td>
<td>34 (45.94)</td>
<td>62 (41)</td>
</tr>
<tr>
<td>10 – 14</td>
<td>29 (38.16)</td>
<td>23 (31.08)</td>
<td>52 (35)</td>
</tr>
</tbody>
</table>

Figures in parenthesis indicate percentage.

Table 2: Distribution of paediatric dengue cases according to socio-economic status

<table>
<thead>
<tr>
<th>Socioeconomic status</th>
<th>No. of cases</th>
<th>Total (n=150)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban (n=58)</td>
<td>Rural (n=92)</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>3 (5.17)</td>
<td>8 (8.7)</td>
</tr>
<tr>
<td>II</td>
<td>10 (17.24)</td>
<td>17 (18.48)</td>
</tr>
<tr>
<td>III</td>
<td>19 (32.76)</td>
<td>25 (27.17)</td>
</tr>
<tr>
<td>IV</td>
<td>12 (20.69)</td>
<td>24 (26.09)</td>
</tr>
<tr>
<td>V</td>
<td>14 (24.14)</td>
<td>18 (19.57)</td>
</tr>
</tbody>
</table>

Figures in parenthesis indicate percentage.

100% children presented with fever as the predominant complaint followed by vomiting 58.7%, abdominal pain 50%, cough 40.7%, retro-orbital pain 39.3%, arthralgia 32.7% and headache 18% (Table 3).

The bleeding manifestation was found in 30.7 % paediatric dengue cases of which 1.1% in DF, 70.3% in DHF and 90.5% in DSS and this was significant. Has the dengue fever progress towards DHF and DSS, the bleeding manifestations increases. The purpura (19.3 %) was predominant bleeding manifestation followed by melena (16.7%) (Table 3).
Table 3: Distribution of pediatric dengue cases according to symptomatology

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>DF (%) (n=92)</th>
<th>DHF (%) (n=37)</th>
<th>DSS (%) (n=21)</th>
<th>Total (n=150)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever</td>
<td>92 (100)</td>
<td>37 (100)</td>
<td>21 (100)</td>
<td>150 (100)</td>
<td>-</td>
</tr>
<tr>
<td>Cough</td>
<td>35 (38)</td>
<td>15 (40.5)</td>
<td>11 (52.4)</td>
<td>61 (40.7)</td>
<td>0.483a</td>
</tr>
<tr>
<td>Vomiting</td>
<td>53 (57.6)</td>
<td>29 (78.4)</td>
<td>6 (28.6)</td>
<td>88 (58.7)</td>
<td>0.001*</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>45 (48.9)</td>
<td>18 (48.6)</td>
<td>12 (57.1)</td>
<td>75 (50)</td>
<td>0.779a</td>
</tr>
<tr>
<td>Headache</td>
<td>17 (18.5)</td>
<td>6 (16.2)</td>
<td>4 (19)</td>
<td>27 (18)</td>
<td>0.947a</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>36 (39.8)</td>
<td>16 (43.2)</td>
<td>3 (14.3)</td>
<td>49 (32.7)</td>
<td>0.078a</td>
</tr>
<tr>
<td>Retro-orbital pain</td>
<td>38 (41.3)</td>
<td>13 (35.1)</td>
<td>8 (38.1)</td>
<td>59 (39.3)</td>
<td>0.804a</td>
</tr>
<tr>
<td>Gum bleeding</td>
<td>0 (0)</td>
<td>1 (2.70)</td>
<td>1 (4.76)</td>
<td>2 (1.3)</td>
<td>0.164b</td>
</tr>
<tr>
<td>Epistaxis</td>
<td>0 (0)</td>
<td>4 (10.81)</td>
<td>5 (23.80)</td>
<td>9 (6)</td>
<td>0.0001b</td>
</tr>
<tr>
<td>Melena</td>
<td>0 (0)</td>
<td>13 (35.13)</td>
<td>12 (57.14)</td>
<td>25 (16.7)</td>
<td>0.0001a</td>
</tr>
<tr>
<td>Purpura</td>
<td>1 (1.08)</td>
<td>10 (27.03)</td>
<td>19 (90.47)</td>
<td>29 (19.3)</td>
<td>0.0001a</td>
</tr>
</tbody>
</table>

*aChi square, bFisher’s exact. The numbers in the bracket for are percentages to the column total.

Table 4: Distribution of pediatric dengue cases according to tourniquet test

<table>
<thead>
<tr>
<th>Tourniquet test</th>
<th>DF (%) (n=92)</th>
<th>DHF (%) (n=37)</th>
<th>DSS (%) (n=21)</th>
<th>Total (%) (n=150)</th>
<th>P* value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>0 (0)</td>
<td>10 (27.02)</td>
<td>19 (90.47)</td>
<td>29 (19.3)</td>
<td>0.0001</td>
</tr>
<tr>
<td>Negative</td>
<td>92 (100)</td>
<td>27 (72.97)</td>
<td>2 (9.52)</td>
<td>121 (80.6)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>92</td>
<td>37</td>
<td>21</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

*Chi-square

Table 5: Distribution of pediatric dengue cases according to haemoglobin, haematocrit and platelet count

<table>
<thead>
<tr>
<th>Indicators</th>
<th>DF (%) (n=92)</th>
<th>DHF (%) (n=37)</th>
<th>DSS (%) (n=21)</th>
<th>Total (%)</th>
<th>P* value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemoglobin (gm%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 8</td>
<td>14 (15.2)</td>
<td>3 (8.1)</td>
<td>2 (9.5)</td>
<td>19 (12.7)</td>
<td>0.135</td>
</tr>
<tr>
<td>8 – 12</td>
<td>56 (60.9)</td>
<td>21 (56.8)</td>
<td>10 (47.6)</td>
<td>87 (58)</td>
<td></td>
</tr>
<tr>
<td>> 12</td>
<td>22 (23.9)</td>
<td>13 (35.1)</td>
<td>9 (42.9)</td>
<td>44 (29.3)</td>
<td></td>
</tr>
<tr>
<td>Mean ±SD</td>
<td>10.3±2.2</td>
<td>11.5±2.9</td>
<td>11.4±3.5</td>
<td>10.7±2.6</td>
<td></td>
</tr>
<tr>
<td>Haematocrit (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 35</td>
<td>64 (69.6)</td>
<td>20 (54.1)</td>
<td>11 (52.4)</td>
<td>95 (63.3)</td>
<td>0.128</td>
</tr>
<tr>
<td>35 – 50</td>
<td>28 (30.4)</td>
<td>14 (37.8)</td>
<td>10 (47.6)</td>
<td>52 (34.6)</td>
<td></td>
</tr>
<tr>
<td>> 50</td>
<td>0</td>
<td>3 (8.1)</td>
<td>0</td>
<td>3 (8.1)</td>
<td></td>
</tr>
<tr>
<td>Mean ±SD</td>
<td>31.2±6.4</td>
<td>35±8.5</td>
<td>33.4±9.2</td>
<td>32.5±7.6</td>
<td></td>
</tr>
<tr>
<td>Platelet count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 20000</td>
<td>0</td>
<td>2 (5.4)</td>
<td>4 (19.1)</td>
<td>6 (4)</td>
<td>0.0001</td>
</tr>
<tr>
<td>20 0000 – 100 0000</td>
<td>12 (13)</td>
<td>35 (94.6)</td>
<td>16 (76.2)</td>
<td>63 (42)</td>
<td></td>
</tr>
<tr>
<td>100 0000 – 2000000</td>
<td>49 (53.3)</td>
<td>0</td>
<td>1 (4.8)</td>
<td>50 (33.3)</td>
<td></td>
</tr>
<tr>
<td>> 2000000</td>
<td>31 (33.7)</td>
<td>0</td>
<td>0</td>
<td>31 (20.7)</td>
<td></td>
</tr>
<tr>
<td>Mean ±SD</td>
<td>192843±114865</td>
<td>48864±146134</td>
<td>42871±27142</td>
<td>1363327±115374</td>
<td></td>
</tr>
</tbody>
</table>

*aOne way ANOVA

The Tourniquet test was positive in 19.3% of pediatric dengue cases, of which 73% in DHF and 90.5% in DSS and this was statistically highly significant (Table 4).

The mean haemoglobin in the present study was 10.7 ± 2.6 gm/dl with the range of 4.5 gm/dl to 21.2 gm/dl. The mean haemoglobin level in DF is 10.3 ± 2.2 gm/dl, in DHF is 11.5 ± 2.9 gm/dl and in DSS is 11.4 ± 3.5 (Table 6). There was a no significant statistical correlation between haemoglobin and severity of disease among the clinical subgroups of dengue (Table 5).

DISCUSSION

In the present study 41% of these cases were in the age group of 5 -9 years, a study by Kulkarni MJ et al in Jaipur in 2010 majority cases reported in age
group of 6 – 12 years (45.8%), in ArulkumaranA-
runagirinathan et al 7 study in Puducherry in 2015
age group 5 – 15 (58%) years was affected, Kale AV
et al 8 study in Maharashtra 11 – 15 years age group
was affected. The ratio of M:F = 1.03:1, which is in
similar to the observations made in the studies of
Manjith Narayanan et al 9, Abmshahidulalam et al
10.43.3% of paediatric dengue cases were reported
during monsoon period and 44.7% of paediatric
dengue cases were reported during post monsoon
time, these findings were similar to study by Pra-
fulla Dutta et al 11

In the present study 100% had fever, similar find-
ings noted in 7,8,10,12,13 (Arulkumaran Arunagirina-
than et al, Kale AV et al, Abmshahidulalam et al,
Joshi R, Adarsh Eregowda) 6.8.11.12 Abmshahidulalam et al 10 reported 31% and Kale AV et al 8 64.67%.In the present study 50%
had abdominal pain similar finding noted in study
by Kale AV et al 8, the studies ArulkumaranAru-

agirinathan et al, Abmshahidulalam et al and Jo-
shi R,Manjuth M N 7,10,12,13 reported between 32
to 38%, Adarsh Eregowda 13 studies reported
65%.In the present study 18% had headache similar
finding noted in Abmshahidulalam et al 10, studies
Kale AV et al, Adarsh Eregowdanad Manjunath M
N 8,13,14 reported between 27% to 38%.In the present
study 32.7% had arthralgia wide variation was ob-
erved across several studies Kale AV et al 8 re-
ported 65% and in study by Manjunath M N 14 was
13%.In the present study 39.3% had retro-orbital
pain similar finding observed in Kale AV et al 8
study.

In present study purpura (19.3 %) was predomi-
nant bleeding manifestation followed by melena
(16.7%). In Kulkarni MJ et al 6 study 44.5 % was
bleeding manifestation of which 25% was epistaxis,
in Joshi R 12 study 38.5% had bleeding manifesta-
tion 68.6 % malena, 31.8% skin bleeding, 18.2% epi-
taxis, in Manjunath M N 14 study 4.5% had bleed-
ing manifestation of which 87% skin bleeding and
4% epistaxis.The Tourniquet test was positive in
19.3% of paediatric dengue cases, it is 25% in Delhi
study by Sunil Gomber et al 15 , 14% in Joshi R 12
study, 34.67% in Kale AV et al 8 study in Maharash-
tra

Platelet counts carry one of the most important key
for diagnoses. On taking the WHO limit of
<100000/cumm for low platelet count 46% of
children had in the present study. The mean platelet
in the present study was 136332.67/cumm with range
of 10800, to 726000/cumm. Only platelet counts at
admission was not taken as an indicator for bleed-
ing tendencies. This suggest that other factors like
platelet dysfunction or disseminated intravascular
coaulation may have a role in bleeding in dengue
fever cases. However studies which include only
DHF cases show correlation between low platelet
 count and bleeding manifestation16 . The studies by
Narayan et al 9 and Sunil Gomber et al 15 have
documented the same. Platelet count provides a
very useful means of diagnoses at the screening
level. Hence platelet count was a sensitive indica-
tor for diagnosis. Bleeding manifestations are more
frequent with low platelet count.

CONCLUSION

The clinical manifestation of dengue varies widely ranging from undifferentiated fever to
shock and severity is more in vulnerable popula-
tion thus peripheral health worker and medical of-

ficer should be aware of the clinical profile of
dengue infection for appropriate action and we can
also control further spread and possible outbreaks.

REFERENCES

2. World Health Organisation Regional Office for South-East Asia. Comprehensive Guidelines for Prevention and Control
of Dengue and Dengue Haemorrhagic Fever, Revised and Expanded Edition.WHO, New Delhi: South East Asia

3. Government of India. Guidelines for clinical management of dengue fever, dengue haemorrhagic fever and dengue
shock syndrome. Directorate of NVBDCP. Director General of Health Services, New Delhi: Ministry of Health and

4. Government of India, Mid term plan 2011 to 2013 for preven-
tion and control of dengue and chikungunya. National Vector Borne Disease Control Programme, Directorate of

5. Dudala SR, Arlappa N. An Updated Prasad’s Socio Eco-

dengue Indian J of paediatrics. 2010 Oct; 77: 1103-1107.

7. Arunagirinathan A, Thirunavukarasu B, Narayanaswamy
DK, Raghavan A, RaghavenndranVDClinicalProfi le and
Outcome of Dengue Fever Cases in Children by Adopting

8. Kale AV et al, Clinical Profile and Outcome of Dengue Fever
from a Tertiary Care Centre at Aurangabad Maharashtra
India: An Observational Study. IOSR Journal of Dental and

Sargunam CS, Ramamurty N. Dengue fever epidemic in
Chennai, A study of clinical profile and outcome. Indian

